Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Cell Rep ; 43(4): 114120, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625796

ABSTRACT

Border-associated macrophages (BAMs) are tissue-resident macrophages that reside at the border of the central nervous system (CNS). Since BAMs originate from yolk sac progenitors that do not persist after birth, the means by which this population of cells is maintained is not well understood. Using two-photon microscopy and multiple lineage-tracing strategies, we determine that CCR2+ monocytes are significant contributors to BAM populations following disruptions of CNS homeostasis in adult mice. After BAM depletion, while the residual BAMs possess partial self-repopulation capability, the CCR2+ monocytes are a critical source of the repopulated BAMs. In addition, we demonstrate the existence of CCR2+ monocyte-derived long-lived BAMs in a brain compression model and in a sepsis model after the initial disruption of homeostasis. Our study reveals that the short-lived CCR2+ monocytes transform into long-lived BAM-like cells at the CNS border and subsequently contribute to BAM populations.


Subject(s)
Brain , Macrophages , Monocytes , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Monocytes/metabolism , Macrophages/metabolism , Mice , Brain/pathology , Brain/metabolism , Mice, Inbred C57BL , Homeostasis
2.
Cell Mol Life Sci ; 81(1): 116, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438808

ABSTRACT

Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1ß negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1ß on synaptic displacement. This study demonstrates that IL-1ß is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.


Subject(s)
Learning , Microglia , Calcium , GABAergic Neurons , Interleukin-1beta , Synapses
3.
Environ Sci Pollut Res Int ; 30(58): 121684-121701, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37953422

ABSTRACT

In this study, a polyaniline/mesoporous silica (PANI/MCM-41) composite material that can be used as a filler for permeable reactive barrier (PRB) was prepared by in situ polymerization. Firstly, the adsorption capacity of PANI/MCM-41 on Cr (VI) in solution was investigated. The results show that the prepared PANI/MCM-41 exhibits a significant Cr (VI) adsorption capacity (~ 340 mg/g), and the adsorption process is more accurately described by the Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. In addition, adsorption-desorption cycle experiments proved the excellent reusability of the material. Subsequently, the material was utilized as a filler in the PRB for the remediation of Cr(VI)-contaminated soil using electrokinetic-permeable reactive barrier (EK-PRB) technology. The results show that compared with traditional electrokinetic remediation, the use of PANI/MCM-41 as an active filler can enlarge the current during remediation and enhance the conductivity of soil, which increases the removal rates of total Cr and Cr(VI) in soil (17.4% and 10.2%).


Subject(s)
Chromium , Water Pollutants, Chemical , Adsorption , Chromium/analysis , Silicon Dioxide , Soil , Ions , Kinetics
4.
Acta Pharmacol Sin ; 43(1): 15-25, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33824460

ABSTRACT

White matter injury is the major pathological alteration of subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion. It is characterized by progressive demyelination, apoptosis of oligodendrocytes and microglial activation, which leads to impairment of cognitive function. Triptolide exhibits a variety of pharmacological activities including anti-inflammation, immunosuppression and antitumor, etc. In this study, we investigated the effects of triptolide on white matter injury and cognitive impairments in mice with chronic cerebral hypoperfusion induced by the right unilateral common carotid artery occlusion (rUCCAO). We showed that triptolide administration alleviated the demyelination, axonal injury, and oligodendrocyte loss in the mice. Triptolide also improved cognitive function in novel object recognition test and Morris water maze test. In primary oligodendrocytes following oxygen-glucose deprivation (OGD), application of triptolide (0.001-0.1 nM) exerted concentration-dependent protection. We revealed that the protective effect of triptolide resulted from its inhibition of oligodendrocyte apoptosis via increasing the phosphorylation of the Src/Akt/GSK3ß pathway. Moreover, triptolide suppressed microglial activation and proinflammatory cytokines expression after chronic cerebral hypoperfusion in mice and in BV2 microglial cells following OGD, which also contributing to its alleviation of white matter injury. Importantly, mice received triptolide at the dose of 20 µg·kg-1·d-1 did not show hepatotoxicity and nephrotoxicity even after chronic treatment. Thus, our results highlight that triptolide alleviates whiter matter injury induced by chronic cerebral hypoperfusion through direct protection against oligodendrocyte apoptosis and indirect protection by inhibition of microglial inflammation. Triptolide may have novel indication in clinic such as the treatment of chronic cerebral hypoperfusion-induced SIVD.


Subject(s)
Cognitive Dysfunction/drug therapy , Diterpenes/pharmacology , Neuroprotective Agents/pharmacology , Phenanthrenes/pharmacology , White Matter/drug effects , Animals , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Diterpenes/administration & dosage , Dose-Response Relationship, Drug , Epoxy Compounds/administration & dosage , Epoxy Compounds/pharmacology , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Neuroprotective Agents/administration & dosage , Phenanthrenes/administration & dosage , Structure-Activity Relationship , White Matter/metabolism , White Matter/pathology
5.
Cell Rep ; 33(5): 108346, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33147450

ABSTRACT

Complex febrile seizures (FSs) lead to a high risk of intractable temporal lobe epilepsy during adulthood, yet the pathological process of complex FSs is largely unknown. Here, we demonstrate that activated microglia extensively associated with glutamatergic neuronal soma displace surrounding GABAergic presynapses in complex FSs. Patch-clamp electrophysiology establishes that the microglial displacement of GABAergic presynapses abrogates a complex-FS-induced increase in GABAergic neurotransmission and neuronal excitability, whereas GABA exerts an excitatory action in this immature stage. Pharmacological inhibition of microglial displacement of GABAergic presynapses or selective ablation of microglia in CD11bDTR mice promotes the generation of complex FSs. Blocking or deleting the P2Y12 receptor (P2Y12R) reduces microglial displacement of GABAergic presynapses and shortens the latency of complex FSs. Together, microglial displacement of GABAergic presynapses, regulated by P2Y12R, reduces neuronal excitability to mitigate the generation of complex FSs. Microglial displacement is a protective event during the pathological process of complex FSs.


Subject(s)
Microglia/pathology , Seizures, Febrile/pathology , Synapses/pathology , gamma-Aminobutyric Acid/metabolism , Animals , Cerebral Cortex/pathology , Disease Susceptibility , Imaging, Three-Dimensional , Mice, Inbred C57BL , Neurons/pathology , Phagocytosis , Presynaptic Terminals/metabolism , Receptors, Purinergic P2Y12/metabolism , Synaptic Transmission
7.
Stem Cell Reports ; 12(3): 532-544, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30745032

ABSTRACT

The neurological recovery following traumatic brain injury (TBI) is limited, largely due to a deficiency in neurogenesis. The present study explores the effects of histamine H3 receptor (H3R) antagonism on TBI and mechanisms related to neurogenesis. H3R antagonism or H3R gene knockout alleviated neurological injury in the late phase of TBI, and also promoted neuroblast differentiation to enhance neurogenesis through activation of the histaminergic system. Histamine H1 receptor, but not H2 receptor, in neural stem cells is shown to be essential for this promotion by using Hrh1fl/fl;NestinCreERT2 and Hrh2fl/fl;NestinCreERT2 mice. Moreover, increase in mature and functional neurons at the penumbra area conferred by H3R antagonism was abrogated in Hrh1fl/fl;NestinCreERT2 mice. Taken together, H3R antagonism provides neuroprotection against TBI in the late phase through the promotion of neurogenesis, and the H1 receptor in neural stem cells is required for this action. H3R may serve as a new target for clinical treatment of TBI.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Histamine Antagonists/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Receptors, Histamine H1/metabolism , Receptors, Histamine H3/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism
8.
Brain Behav Immun ; 60: 93-105, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27663285

ABSTRACT

Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion exhibits progressive white matter and cognitive impairments. However, its pathogenetic mechanisms are poorly understood. We investigated the role of interleukin-1ß (IL-1ß) and its receptor IL-1 receptor type 1 (IL-1R1) in an experimental SIVD model generated via right unilateral common carotid arteries occlusion (rUCCAO) in mice. We found that IL-1ß expression was elevated in the corpus callosum at the early stages after rUCCAO. IL-1 receptor antagonist (IL-1Ra), when delivered at an early stage, as well as IL-1R1 knockout, rescued the downregulation of myelin basic protein (MBP) and improved remyelination at the later stage after rUCCAO. Our data suggest that the recruitment of OPCs, but not the proliferation or differentiation of OPCs, is the only compromised step of remyelination following chronic cerebral ischemia. IL-1Ra treatment and IL-1R1 knockout had no effect on the oligodendrocyte progenitor cell (OPC) proliferation, but did promote the recruitment of newly generated OPCs to the corpus callosum, which can be reversed by compensatory expression of IL-1R1 in the SVZ of IL-1R1 knockout mice. Further, we found that recruited OPCs contribute to oligodendrocyte regeneration and functional recovery. In transwell assays, IL-1ß inhibited OPC migration through IL-1R1. Moreover, KdPT which can enter the brain to block IL-1R1 also showed comparable protection when intraperitoneally delivered. Our results suggest that IL-1ß during the early stages following chronic cerebral hypoperfusion impedes OPC recruitment via IL-1R1, which inhibits white matter repair and functional recovery. IL-1R1 inhibitors may have potential uses in the treatment of SIVD.


Subject(s)
Interleukin-1beta/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , White Matter/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Chronic Disease , Disease Models, Animal , Neurogenesis/physiology , White Matter/pathology
9.
Huan Jing Ke Xue ; 36(7): 2604-9, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26489331

ABSTRACT

To better evaluate the toxicity of tannery and textile effluents from various emission stages, the research attempted battery of toxicological bioassays and toxicological indices. The bioassays employed Microtox test, zebra fish embryo-larval test and algae (Chlorella vulgaris) test. Meanwhile, toxicological indices including Toxicity Unit (TU), Average Toxicity (AvTx), Toxic Print (TxPr), Most Sensitive Test (MST) and Potential Ecotoxic Effects Probe (PEEP) were applied. The results illustrated that PEEP was the most comprehensive index to take account of the emissions and toxic potential of effluents. PEEP values showed that the reduction rates of toxicity in tannery and textile effluents were 36. 8% and 23. 2%, respectively. Finally, based on the Microtox toxicity test, toxicants in textile effluent were identified through the toxicity identification evaluation (TIE) studies. The results indicated that the main toxicant of textile effluent was non-polar organic pollutants, followed by filterable compounds, heavy metals, oxidizing substances and volatile components.


Subject(s)
Industrial Waste , Tanning , Textiles , Wastewater/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chlorella vulgaris , Toxicity Tests , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...